

Dr Jason W. Jones

College of Engineering, Swansea University

September 2017

SwanSim - A Guide to Git /
SourceTree / GitLab for Windows

Contents
1 Introduction .. 2

2 Obtaining the Software ... 3

2.1 Software Installation .. 4

3 Uploading the Project to the SwanSim GitLab ... Error! Bookmark not defined.

3.1 Working with a Local Repository ... 7

3.2 File Staging ... 8

3.3 Committing to the Repository .. 9

3.4 Viewing the history of our Repository. ..10

3.5 Making changes in our Repository ...11

4 Pushing to the GitLab Server ..14

4.1 Setting up Authentication with GitLab ...14

1 Introduction
This document is part of a series of short guides available on the SwanSim web site

(http://www.swansim.org).

The purpose of this document is to guide you through the steps of converting a standalone software

project into one managed by the Git source code control system hosted by SwanSim’s GitLab server

(https://git.swansim.org).

This is then followed with the next most common operation, creating a copy of a Repository held on the

GitLab server onto another PC that has had nothing previously installed.

It is highly recommended to use this guide on a software project that you are happy to delete in order

to get used to the operation of the combination of Git, SourceTree and GitLab.

Once you are familiar with the basic operations then use the follow-up guide available on the SwanSim

web site to learn the more advanced features of Git.

http://www.swansim.org/
https://git.swansim.org/

2 How to use this Guide
The relevant sections of this guide vary depending on your experience with Git, GitLab and SourceTree.

My experience Sections to follow

I am new to all this Git Repository stuff Section 3 - Obtaining the Software
Section 4 - Creating a Repository from an existing project
Section 5 - Pushing to the GitLab Server

I have a project on GitLab and I need to
work on it on another computer

Section 3 - Obtaining the Software
Section 6 - Cloning a GitLab Repository to my Computer

The initial setup of SourceTree and linking it to the GitLab server may seem arduous at first (especially if

you have never done anything like this before) but once done, the day to day interaction with your

repository is very simple.

3 Obtaining the Software
Git is a command-line driven tool that is usually installed as part of most Linux distributions and is

available for Windows from https://git-scm.com/download/win.

However, learning to use Git in this manner is hard. For every platform, there is a choice of graphical

tools whose aim is to make Git easier to use. The graphical tools used in this document are SourceTree

(https://www.sourcetreeapp.com).

There seems to be an issue with the latest version of SourceTree. Please go to the Download Archive at

the bottom of the page and then download version 2.1.10.0.

3.1 Software Installation
Download and run the installer paying particular attention to the following panels:

• License Agreement – Just agree.

• Atlassian Account – In order to use SourceTree, you will need an account with Atlassian. This is

free.

o First install of SourceTree - You will need to create an Atlassian account.

o Installed before – Just select to use the account you registered before.

• Remotes – Select ‘Skip Setup’

• Load SSH Key

o First install of SourceTree – Select ‘No’.

o Installed before – Assuming you followed the instructions in this guide you will have

stored the SSH keys in a location that can be accessed now.

Select ‘Yes’, navigate to where the .ppk file is located and select ‘Open’.

• SourceTree: Git not found – Unless you have already installed a version of Git on your computer

– select ‘Download an embedded version of Git for SourceTree’.

Wait for this to install.

• SourceTree: Mercurial not found – We don’t want to use Mercurial so just select ‘I don’t want to

use Mercurial’

You will now have a SourceTree window open as shown below.

https://git-scm.com/download/win
https://www.sourcetreeapp.com/

4 Creating a Repository from an existing project
This section assumes you have a folder of source code files that you wish to add to a GitLab repository. It

is important to note, at this stage, that there are numerous guidelines as to what should and should not

be stored in a repository. However, in general, they can be summarised as follows:

• Files that are required to build your application should go in the repository.

• Files that are generated as part of the build process should not go in the repository

If your project is built in such a way that the object files and executables and stored in the same folders

as your source code then you will also need a file called ‘.gitignore’. This contains a set of patterns that

control which files Git will ignore (see Appendix A for more details).

COPYING, COPYRIGHT.txt, README.md files
(see https://www.swansim.org/guides/contributors-
guidelines/ for samples)

Object files

Source Code Executables

Build scripts (Makefiles, CMakeFile.txt) Data files (unless they are used as part of a
defined test suite)

Resources (such as images for web sites, GUIs)

Test data (if used as part of a defined test suite but
keep them small)

Documentation

We will be using the source code to the FLITE Mesh Generators available from SwanSim

(https://www.swansim.org/products/flite-mesh-generation) to illustrate the procedure of adding a

project to a Git repository.

In this folder, the source code is split up into a number of sub-folders, it is built using CMake (see the

CMakeLists.txt file) and it contains the COPYING, COPYRIGHT.txt and README.md files.

https://www.swansim.org/guides/contributors-guidelines/
https://www.swansim.org/guides/contributors-guidelines/
https://www.swansim.org/products/flite-mesh-generation

4.1 Working with a Local Repository
The first thing we need to do is create a local repository in our source code folder. This will be used to

maintain a complete history of everything that was committed to the repository.

In SourceTree you need to click on the ‘Create’ icon located in the top toolbar. This opens a window as

shown below:

Here you need to:

• Navigate to the root folder of your source code.

• Give your repository a name (this will default to the last name of the folder you selected above

but can be changed)

• Leave the repository type as ‘Git’

• Click ‘Create’

You will be notified that the folder you chose is not empty and asked if you want to create the repository

there – select ‘Yes’.

You will then be asked for your details in relation to this repository – namely your name and your email

address – as shown below. This will be stored in the repository and is used to track who made which

changes when working in a team.

Leave the option, ‘Use these details for all repositories’ ticked so that you will not be asked for this

information again.

Having completed that, you will be presented with a SourceTree window looking like this:

This panel is divided into three main panes of interest at this stage:

1. Staged Files – This lists the files that have been staged for adding to the repository. This means

the list of files that will be added to the repository when the ‘Commit’ button is pressed.

2. Unstaged Files – This lists the files that have changed since the last commit to the repository but

have not been staged yet.

3. File Contents – The pane on the right will show the changes between the file you are staging and

the same file in the repository. Clicking on any file in either of the first two panes will populate

this third pane.

As the repository is empty, this pane just shows the contents of the file as there is nothing in the

repository to compare to.

4.2 File Staging
The first step is to stage all of our files and folders. You can do this by simply clicking on the ‘Stage All’

button. This will change the window to look like this.

Here we can see all of the files and folders listed in the Staged Files pane.

4.3 Committing to the Repository
Once our files have been staged, we need to commit them to the repository. Every commit in Git must

have a message associated with it. This message should be a summary of what changes were made since

the last commit. Although this seems tedious, it will be extremely helpful when perusing the repository in

months/years to come to find out when and who made certain changes.

Since this is our first commit, a simple message like ‘Initial repository commit’ is sufficient – this is

entered in the text box at the bottom of the window. Later when committing changes, listing the changes

using a “-“ character as the bullet point can be useful.

Once the message has been entered simply select the ‘Commit’ button. This creates a default branch

‘master’ in our repository (shown on the left). The branch on which we are currently working is always

shown in bold. The three staging panes have been removed as there are no more files to be staged.

4.4 Viewing the history of our Repository.
The history and contents of our repository can be viewed by clicking on the ‘master’ branch on the left of

the window. This changes the window to look like this.

This window is divided into four main panes:

1. Repository History – Here we can see the history of commits that have been made. Each entry in

this list can be selected to show more details in the other panes. (for now there is just one)

2. Changed Files – This lists the files that were committed in the currently selected commit.

3. Commit Info – This displays some information about the commit. (For some reason this pane

sometimes remains blank when there is just one commit in the repository).

4. File Changes – Selecting any file in the Changed Files pane, causes its contents to appear in this

pane colour coded depending on how it differs from the previous version of the file.

4.5 Making changes in our Repository
Now we have our repository set up with our source code committed, we will make some changes and

commit those to the repository.

The changes we will make are:

• Remove the ZCCE Logo.ico file.

• Add a new text file ‘dummy.txt’

• Modify the ‘COPYRIGHT.txt file’

These changes will all be performed using a normal Windows tools – in this case the File Explorer and

Notepad.

Once these changes have been made, SourceTree will automatically detect them and update its window.

(For some very large projects there may be a slight delay but this can be expedited by either using the

‘View’ menu and selecting ‘Refresh’ or hitting ‘F5’.

In the Repository View, we can see a new entry in our repository history – ‘Uncommitted changes’.

Selecting this shows the files that have been changed but not staged.

There are two ways of staging our changes to the repository in SourceTree:

• Using the Repository view (the one shown above)

• Using the ‘Working copy’ view (the first SourceTree window shown in this Section)

They both perform identical actions and it is up to user preference which one to use.

Staging our changes using the ‘Repository View’ is performed by simply clicking on the ‘Stage All’ button.

Clicking on the ‘Commit’ icon at the top of the window then takes you to the ‘Working copy’ window.

Alternatively, the ‘Working copy’ entry in the pane on the left can be selected to take you to the ‘Working

copy’ window and the staging of files can be performed there as described at the start of this section.

Regardless of which way this is performed, a message for the commit must be entered (in this case we

will enter ‘Some demo changes’) and the Commit button is clicked.

If we move back to the ‘Repository View’ by clicking on ‘Master’ we can see two entries relating to the

two commits we have made to the repository.

5 Pushing to the GitLab Server
So far we have created a Git repository, committed our source code files and folders to the repository

and then made some changes and committed those. This, however, has all been performed on the local

PC, and the entire repository is stored within our source code folder.

(For the curious amongst you – the repository is actually stored in a folder ‘.git’ in the root folder of our

source code as a set of folders and files with very odd looking names. You may have to show ‘Hidden

files’ in order to see this folder.)

In order to be able to share our repository easily with others in order to work as a team, or simply to have

a central, backed-up area in which our repositories are kept, we will need to push our repository to the

SwanSim GitLab server.

Before we can use the GitLab server, we need an account. If one has not already been created then

please email Jason Jones (j.w.jones@swansea.ac.uk) for an account.

5.1 Setting up Authentication with GitLab
Logging in to the GitLab server (https://git.swansim.org) is performed by manually entering your

username (or email) and your password into the log in page.

Git, on the other hand, uses SSH (Secure Shell) keys to perform the authentication without the need to

enter any passwords. SSH authentication relies on a public and private key – the private key should be

kept secret but the public key can be shared.

5.1.1 Creating the SSH keys
This is the most difficult part of the setup to get right. Luckily creating your SSH keys only has to be done

once. It is then advisable to store these somewhere secure but easily accessible (e.g. Dropbox).

There are two main file formats used to store the public and private keys – Putty (the tool used by

Windows users to access Linux) and OpenSSH (the standard Linux tools). SourceTree uses the Putty

format, whereas GitLab uses the OpenSSH format. SourceTree has the ability to generate both formats

but the steps are not the most intuitive.

The files we are going to create are:

• ‘id_rsa.ppk’ – This is the Putty file format that stores the public and private keys in one file.

• ‘id_rsa.pub’ – This stores the public key in the OpenSSH file format.

• ‘id_rsa.key’ – This stores the private key in the OpenSSH file format.

In SourceTree, go to the ‘Tools’ menu and select ‘Create or Import SSH keys’. This opens a window as

shown below.

mailto:j.w.jones@swansea.ac.uk
https://git.swansim.org/

Click on the ‘Generate’ button. It asks you to move the move around inside the blank area of the window

to create some randomness. When finished the window will look like this.

Creating ‘id_rsa.ppk’ – Click on the ‘Save private key’ and then navigate to the same folder and enter the

filename ‘id_rsa.ppk’. It will ask you if you are sure you don’t want to save it without a passphrase – click

‘Yes’.

Creating ‘id_rsa.key’ – Select the ‘Conversions -> Export OpenSSH key‘ menu option, navigate to the

same folder and save it as ‘id_rsa.key’.

Creating ‘id_rsa.pub’ – Create a text file called ‘id_rsa.pub’ using any text editor then select all the text in

the ‘Public Key’ window at the top and paste it into the text editor and save the file.

(Ensure you select every character of the text)

5.1.2 Using the SSH keys
In order to use these keys that have just been generated, we need to tell SourceTree where to find the

key to use and tell GitLab which key to trust.

In SourceTree, select the ‘Tools/Options’ menu item to get the Options panel.

In the SSH Key box, navigate to the ‘id_rsa.ppk’ file saved previously.

Log into the GitLab server (https://git.swansim.org) and go to the ‘Settings’ menu as shown below.

And then select the ‘SSH Keys’ tab as shown below.

https://git.swansim.org/

• Copy and paste the contents of the ‘id_rsa.pub’ file into the ‘Key’ box.

• Enter a Title to identify this key (for example, a combination of Your name and your PC’s name).

• Select ‘Add key’

5.2 Creating a GitLab Project
In order to store our repository on the GitLab Server, we need to create a project. Click on the orange

icon in the top-left of the page to go back to our home page.

From this we need to create a new project that will store our repository. Each project stores one, and

only one, repository. Groups can be created to organise projects if required.

Click on the ‘New project’ button to display this web page.

• Enter a project name and a description. (The name does not need to be the same as the

repository name)

• For now, we will leave the project as ‘private’.

• Select ‘Create project’

This takes you to the home page of your project.

On this web page are a number of sets of instructions to get going with the command-line version of Git.

Since we are using SourceTree, we can ignore these.

The only piece of useful information is the URL near the top of the page. We will be entering this in

SourceTree now.

5.2.1 Linking our local repository to our GitLab project
Back in SourceTree, select the ‘Repository/Repository Settings’ menu item to open the window shown

below.

In this window:

• Select ‘Add’

• Click ‘Default remote’. This populates the name with ‘origin’.

• Enter the URL from the GitLab project web page

• Leave the rest of the panel blank.

• Select ‘OK’

• Select ‘OK’ again to close the window completely.

5.2.2 Pushing our Local Repository to GitLab
Our repository can be pushed to the SwanSim GitLab server by selecting the ‘Push’ icon in SourceTree.

This opens a dialog as shown below.

Since this is the first time we have pushed the ‘master’ branch, we need to tick that branch and then

select ‘Push’. This is also the first time that SourceTree on this particular computer has contacted the

SwanSim GitLab server so the following dialog pops up.

Click ‘Yes’ and then cancel all operations. And try again.

Sometimes retrying the operation fails again. The best thing to do is exit SourceTree and start it again.

This only ever happens the first time you use the SSH keys you have just installed. Creating further

projects and adding repositories will work with no problem.

Congratulations!! You have now pushed your entire repository onto the GitLab Server.

6 Cloning a GitLab Repository to my Computer
In this section it is assumed that SourceTree is installed on your computer along with the SSH keys in

order to gain access to your GitLab repositories.

Starting SourceTree will show a window like below.

Select the ‘Clone’ icon.

In this window, enter:

1. The URL of the repository (This is available in the GitLab Project home page)

2. Browse to a folder in which you want to store your local copy of the repository

Select ‘Clone’ to copy across the entire repository from the GitLab server.

This can then be worked on in the normal manner and any changes can be pushed back to the server

with none of the complicated setup required in Section 5.

