SwanSim - A Guide to Git /
SourceTree / GitLab for Windows

Contents

3 1Y oo [V i 4o PP P PP P POPRPRO 2
2 ObtaiNING the SOTtWAIE....ciiieeeee ettt ettt e st e e st e e e rbte e sabeesbeesbeeesbeeesateas 3
2.1 SOFtWAre INSTAIIALION ettt sre e sre e sreenre e 4
3 Uploading the Project to the SwanSim GitLab........cccccoecvvveeiiieeieciieeens Error! Bookmark not defined.
3.1 Working With @ LOCAl REPOSITONY ...uuuiiiieiiiieiiiiiiiiee ettt eecree e e e e e e e srrtae e e e e e e e ssnaraaeeeeeeeenannes 7
3.2 TSIy = {1 V-SSR 8
3.3 CommMIitting 10 the REPOSITOIY....uuuiiiiiie et e e e e e e e e s sab e e e e e e e e e snsraaeeas 9
3.4 Viewing the history of our REPOSITOIY. ..ciiieiiiiiiee e 10
35 Making changes in OUr REPOSITONYccccuuiiiieeieeeciieeeeiee s see et ee s e st ee e e s e e e e saaeeeennraeeennns 11
4 PUShING t0 the GItLah SEIVENeeeeieeee e e et ee e e st e e e s nte e e e e s ntaeeesnenees 14
4.1 Setting up Authentication With GitLab........ccoocieeriiiiii e 14

1 Introduction

This document is part of a series of short guides available on the SwanSim web site
(http://www.swansim.org).

The purpose of this document is to guide you through the steps of converting a standalone software
project into one managed by the Git source code control system hosted by SwanSim’s GitLab server
(https://git.swansim.org).

This is then followed with the next most common operation, creating a copy of a Repository held on the
GitLab server onto another PC that has had nothing previously installed.

It is highly recommended to use this guide on a software project that you are happy to delete in order
to get used to the operation of the combination of Git, SourceTree and GitLab.

Once you are familiar with the basic operations then use the follow-up guide available on the SwanSim
web site to learn the more advanced features of Git.

http://www.swansim.org/
https://git.swansim.org/

2 How to use this Guide

The relevant sections of this guide vary depending on your experience with Git, GitLab and SourceTree.

My experience Sections to follow

| am new to all this Git Repository stuff Section 3 - Obtaining the Software
Section 4 - Creating a Repository from an existing project
Section 5 - Pushing to the GitLab Server

| have a project on GitLab and I needto Section 3 - Obtaining the Software

work on it on another computer Section 6 - Cloning a GitLab Repository to my Computer

The initial setup of SourceTree and linking it to the GitLab server may seem arduous at first (especially if
you have never done anything like this before) but once done, the day to day interaction with your

repository is very simple.

3 Obtaining the Software

Git is a command-line driven tool that is usually installed as part of most Linux distributions and is
available for Windows from https://git-scm.com/download/win.

However, learning to use Git in this manner is hard. For every platform, there is a choice of graphical
tools whose aim is to make Git easier to use. The graphical tools used in this document are SourceTree

(https://www.sourcetreeapp.com).

There seems to be an issue with the latest version of SourceTree. Please go to the Download Archive at

the bottom of the page and then download version 2.1.10.0.

3.1 Software Installation
Download and run the installer paying particular attention to the following panels:

¢ License Agreement — Just agree.
e Atlassian Account — In order to use SourceTree, you will need an account with Atlassian. This is
free.
o First install of SourceTree - You will need to create an Atlassian account.
o Installed before — Just select to use the account you registered before.
¢ Remotes — Select ‘Skip Setup’
¢ Load SSH Key
o First install of SourceTree — Select ‘No’.
o Installed before — Assuming you followed the instructions in this guide you will have
stored the SSH keys in a location that can be accessed now.
Select ‘Yes’, navigate to where the .ppk file is located and select ‘Open’.
¢ SourceTree: Git not found — Unless you have already installed a version of Git on your computer
— select ‘Download an embedded version of Git for SourceTree’.
Wait for this to install.
e SourceTree: Mercurial not found — We don’t want to use Mercurial so just select ‘l don’t want to

use Mercurial’

You will now have a SourceTree window open as shown below.

https://git-scm.com/download/win
https://www.sourcetreeapp.com/

tory Actions Tools Help

New tab

| (&)] = +

Remote Clone Add Create

Local repositories

[All Repos

Add 2 new bookmark or drag 8 d olders into this area o begin

Add Folder

4 Creating a Repository from an existing project

This section assumes you have a folder of source code files that you wish to add to a GitLab repository. It
is important to note, at this stage, that there are numerous guidelines as to what should and should not
be stored in a repository. However, in general, they can be summarised as follows:

¢ Files that are required to build your application should go in the repository.
¢ Files that are generated as part of the build process should not go in the repository

If your project is built in such a way that the object files and executables and stored in the same folders
as your source code then you will also need a file called ‘.gitignore’. This contains a set of patterns that
control which files Git will ignore (see Appendix A for more details).

COPYING, COPYRIGHT.txt, README.md files Object files
(see https://www.swansim.org/guides/contributors-

guidelines/ for samples)

Source Code Executables
Build scripts (Makefiles, CMakeFile.txt) Data files (unless they are used as part of a
defined test suite)

Resources (such as images for web sites, GUIs)
Test data (if used as part of a defined test suite but
keep them small)

Documentation

We will be using the source code to the FLITE Mesh Generators available from SwanSim
(https://www.swansim.org/products/flite-mesh-generation) to illustrate the procedure of adding a
project to a Git repository.

& 5 | flite-mesh-generators. - o X
El
Home Share View [7]

« “ A | GitSample » flite-mesh-generators > v & | Searchflitemesh-generstors 9

 Quick access. Name Type Size
I Desktop CMake_Modules
& Downloads contrib

examples
[£) Documents P

File folder
File folder
File folder
&= Pictures eons
LibBlas

& Music LibCADfix

& videos LibCommonC
LibCommon F
LibLapack

[This PC SurfaceMesher

File folder
File folder
File folder
File folder
. OneDrive File folder
File folder
File folder
VolumeMesher
[] .gitignore
5 cMakelists
[] copving
[5 COPYRIGHT
7] README.md
= 7CCELogo

File folder

GITIGNORE File 5KB
Text Document 6KB
File 35KB
Text Document 1KB
MD File 3KB
Icon 15KB

e Netwark

17 items =

In this folder, the source code is split up into a number of sub-folders, it is built using CMake (see the
CMakelists.txt file) and it contains the COPYING, COPYRIGHT.txt and README.md files.

https://www.swansim.org/guides/contributors-guidelines/
https://www.swansim.org/guides/contributors-guidelines/
https://www.swansim.org/products/flite-mesh-generation

4.1 Working with a Local Repository

The first thing we need to do is create a local repository in our source code folder. This will be used to
maintain a complete history of everything that was committed to the repository.

In SourceTree you need to click on the ‘Create’ icon located in the top toolbar. This opens a window as
shown below:

Fle Edit View Repository Aciions Tools Help

New tab

| O i = +

Local Remote Clone Add Create

Create a repository

| Browse

Git

[Create Repository On Account:

Here you need to:

¢ Navigate to the root folder of your source code.

e Give your repository a name (this will default to the last name of the folder you selected above
but can be changed)

e Leave the repository type as ‘Git’

¢ Click ‘Create’

You will be notified that the folder you chose is not empty and asked if you want to create the repository
there — select ‘Yes'.

You will then be asked for your details in relation to this repository — namely your name and your email
address — as shown below. This will be stored in the repository and is used to track who made which
changes when working in a team.

Leave the option, ‘Use these details for all repositories’ ticked so that you will not be asked for this
information again.

Please enter the user details you wish to associate with your commits

Full Name: |Jason Jones

Email address: [jwjones@swansea.acuk |

Use these details for all repositories

Having completed that, you will be presented with a SourceTree window looking like this:

File Edit View Repository Actions Tools Help

flite-mesh-generators by +

I - G . s c* r 5 Py
® © © @ oI & cC © n = @
Commit Push Pull Fatch Branch Merge Stash Discard Tag GitFlow Terminal Explorer Settings
Pending files, sorted by file status ¥ = ~ &
v] Fe sTatUs Staged fles =

Working Copy
» BRANCHES
@ TaGs

O REMOTES

STASHES

Unstaged files Stage

gitignore

CMakelists.txt

COPYING

COPYRIGHT txt

READMEmd

ZCCE Logaico
CMake_Modules/CheckFortranFunctionExists.criake
CMake_Modules/cmake_pack license txt
CMake_Modules/FindBLAS.cmake
contrib/MUMPS_seq/Changelog
contrib/MUMPS_seq/CMakeLists.txt
contrib/MUMPS_seq/LICENSE
contrib/MUMPS_seq/Makefile
contrib/MUMPS_seq/Makefile.inc
contrib/MUMPS_seq/README

Jason Jones <j.w.jones@swansea.ac.uk> (® | | Commit options... *

Commit

File Status Log / History Search

This panel is divided into three main panes of interest at this stage:

1. Staged Files — This lists the files that have been staged for adding to the repository. This means
the list of files that will be added to the repository when the ‘Commit’ button is pressed.

2. Unstaged Files — This lists the files that have changed since the last commit to the repository but
have not been staged yet.

3. File Contents — The pane on the right will show the changes between the file you are staging and
the same file in the repository. Clicking on any file in either of the first two panes will populate
this third pane.

As the repository is empty, this pane just shows the contents of the file as there is nothing in the
repository to compare to.

4.2 File Staging
The first step is to stage all of our files and folders. You can do this by simply clicking on the ‘Stage All’
button. This will change the window to look like this.

Fille Edit View Repository Actions Tools Help

flite-mesh-generators x B

" 03 T R & * /1 ©)
® ® O @ b & cC ® U @
Commit Push Pl Fetch Branch Merge Stash Discard Teg Git Flow Terminal Explorer Settings

Pending files, sorted by fle status ~ | = ~ & -
[FLE sTaTUs Staged files [Unstage All] | Unstage Selecte
et itgnere

1 BRANCHES CMakeListsitxt

COPYING
) 1aGs

COPYRIGHTt
O REMOTES READMEmd

2CCE Logoico
STASHES o

CMake_Modules/CheckFortranFunctionExists.cmake
CMske_Modules/cmake_pack license txt
CMake_Modules/FindBLAS cmake
contrib/MUMPS_seq/Changelog
contrib/MUMPS_seq/CMakeLists.txt
contrib/MUMPS_seq/LICENSE
contrib/MUMPS_seq/Makefile
contrib/MUMPS_seq/Makefile.inc
contrib/MUMPS_seq/README

Instaged files Stage

[)

c

Jason Jones <j.w.jones@swansea.ac.uk> (@ | | Commit options.. ~

File Status Log / History Search
Here we can see all of the files and folders listed in the Staged Files pane.

4.3 Committing to the Repository
Once our files have been staged, we need to commit them to the repository. Every commit in Git must

have a message associated with it. This message should be a summary of what changes were made since
the last commit. Although this seems tedious, it will be extremely helpful when perusing the repository in
months/years to come to find out when and who made certain changes.

Since this is our first commit, a simple message like ‘Initial repository commit’ is sufficient — this is
entered in the text box at the bottom of the window. Later when committing changes, listing the changes

“ u

using a “-“ character as the bullet point can be useful.

Once the message has been entered simply select the ‘Commit’ button. This creates a default branch
‘master’ in our repository (shown on the left). The branch on which we are currently working is always
shown in bold. The three staging panes have been removed as there are no more files to be staged.

® ® © ¢ P L © n

Commit Push Pull Fetch Branch Merge Stash Discard Tag Git Flow Terminal Explorer Settings

P
&

Pending files, sorted by file status ~ || = ~ & -
[FiLe staTUs

Working Copy
17 BRANCHES
O master

&) TaGs

™ REMOTES

STASHES

Open in Explorer

Jason Jones <j.w.jones@swansea.ac.uk> @ | | Commit options.. *
|
File Status Log / History H Search

4.4 Viewing the history of our Repository.
The history and contents of our repository can be viewed by clicking on the ‘master’ branch on the left of
the window. This changes the window to look like this.

® ® O

P ok © n

=

Commit Push Pul Fetch Branch Merge Stash Discard Tag GitFlow Terminal Explorer Settings
AllBranches *| [Show Remote Branches | Date Order - Jump to
v L FE status Graph Description Date Author Commit
Warking Copy + | 1) R initial repository commit 22.5ep 2017 1108 Jason Jones <jwic _b3378bd

™ REMOTES

STASHES

Sorted by file status *
e =
File Contents Reverse hunk

2 |+ # Crested by https://wum.gitignore.10/api/linux, windows,vim, visuslstudio, codeblocks

4| s Linux #82

5 e

FrY

7 |+ # tenporary files which can be created if a process still has a handle open of a deleted file
5+ .fuse_hidden®

16+ # KDE directory preferences
11|+ .directory

+ # Linux trash folder which mignt appear on any partition or disk
+ .Trash-*

S

g

i
5

15
CMakelists.tet % |+
17|+ sss windous s
COPYING 15+ # windows inage File caches
15|+ Thumbs.db
COPYRIGHT bt 20 + ehthumbs.db
o +
] READMEmd 22+ # Folder config file
ZCCE Loga.ico ;; + Desktop.ini
CMake_Modules/CheckFortranFunctionExists.cmake 25 |+ # Recycle Bin used on file shares
26 | + SRECYCLE.BIN/
CMake_Modules/cmake_pack_license tit 27 |+
28 + # vindows Installer files
CMake_Modules/FindBLAS.cmake v 25 |+ r.cob \

This window is divided into four main panes:

1. Repository History — Here we can see the history of commits that have been made. Each entry in
this list can be selected to show more details in the other panes. (for now there is just one)
Changed Files — This lists the files that were committed in the currently selected commit.
Commit Info — This displays some information about the commit. (For some reason this pane
sometimes remains blank when there is just one commit in the repository).

4. File Changes — Selecting any file in the Changed Files pane, causes its contents to appear in this
pane colour coded depending on how it differs from the previous version of the file.

4.5 Making changes in our Repository
Now we have our repository set up with our source code committed, we will make some changes and
commit those to the repository.

The changes we will make are:

e Remove the ZCCE Logo.ico file.
e Add a new text file ‘dummy.txt’
¢ Modify the ‘COPYRIGHT.txt file’

These changes will all be performed using a normal Windows tools — in this case the File Explorer and
Notepad.

Once these changes have been made, SourceTree will automatically detect them and update its window.
(For some very large projects there may be a slight delay but this can be expedited by either using the
‘View’ menu and selecting ‘Refresh’ or hitting ‘F5’.

Fle Edit View Repository Actions Tools Help

flite-mesh-generators Y +
N o lad r ey
® O © © P h L] E n &
Commit Push Pul Fetch Branch Merge Stash Discard Tag Git Flow Terminal Explorer Settings
All Branches ¥ | [/] Show Remote Branches | Date Order “ (i
] i status Graph Description Date Author Commit
Working Copy) Uncommitted changes 22 Sep 2017 11:26_ ~ -
[} » | 1) EESOE initial repository commit 225ep 2017 1108 Jason Jones <jwjc _b3378bd
1» BRANCHES
O master
) TGS
&> REMOTES
STASHES
Sorted by filestatus ¥ || = ¥ & v
Commit: b3378bd3dSb05fd6beS3e3ebs2c57042a10cf887 [b3378bd] Hy<m "
Author: Ja50n Jones 3. wjones@swanses.ac. ik -
Date: 22 September 2017 11:08:33 [y — =
Committer: Jason Jones = Coments .
1 |-
Initial repository commit 2 + # Created by https://wam.gitignore.io/api/linux,windows,vim,visualstudio,codeblocks
B

tenporary files which can be created if a process still has a handle open of a deleted file
+ .fuse_nidden®

16+ # KpE directory preferences
11|+ .directory

— 13|+ # Linux trash folder which night appear on any partition or disk
sgitignore 14 |+ .Trash-*

FEA Y
CMakeLists.txt . |+

17 224 Windows ##¢

COPYING] # windows image file caches
5 Thumbs

COPYRIGHT.txt ehthunbs .db

README.md

Folder config file
ZCCE Logoaico Desktop. ini
CMake_Modules/CheckFortranFunctionExists cmake # Recycle Bin used on file shares
$RECYCLE BTN/

CMake_Modules/cmake_pack_license txt

ODoO000 00

Windous Installer files
CMake_Modules/FindBLAS cmake

File Status Log / History Search

In the Repository View, we can see a new entry in our repository history — ‘Uncommitted changes’.
Selecting this shows the files that have been changed but not staged.

File Edit View Repositoy Actions Tools Help

flite-mesh-generators by +

® ® © @ P oh 5] &

Commit Bush Pul Fech Branch Merge Stash Discard Tag Git Flow Termin etting
es “|] Show Remote Branches | Date Order
v [FiLE sTATUS G Descript Date
Working Copy] Uncommitted changes 225ep 20171126~
© Pmaster | Initial repository commit 225ep 2017 1108 Jason Jones <jwjc b3378bd

v 1 BRANCHES

O master

@) TaGs

&£ REMOTES

STASHES

Pending files, sorted by file status

o
Staged files Unstage Selected
Unstaged files Stage Selected

COPYRIGHT.bxt
a ZCCE Logaiico
a dummy.txt

File Status Lag / History Search

There are two ways of staging our changes to the repository in SourceTree:

e Using the Repository view (the one shown above)

e Using the ‘Working copy’ view (the first SourceTree window shown in this Section)

They both perform identical actions and it is up to user preference which one to use.

Staging our changes using the ‘Repository View’ is performed by simply clicking on the ‘Stage All’ button.
Clicking on the ‘Commit’ icon at the top of the window then takes you to the ‘Working copy’ window.
Alternatively, the ‘Working copy’ entry in the pane on the left can be selected to take you to the ‘Working
copy’ window and the staging of files can be performed there as described at the start of this section.

Regardless of which way this is performed, a message for the commit must be entered (in this case we
will enter ‘Some demo changes’) and the Commit button is clicked.

If we move back to the ‘Repository View’ by clicking on ‘Master’ we can see two entries relating to the
two commits we have made to the repository.

Fle Edit View Repository Actions Jooks Help

flite-mesh-generators

® ® © @ P L © n

=B &

Commit Push Pull Fetch Branch Merge Stash Discard Tag Git Flow Terminal Explorer Settings
[AllBranches ~| [snow Remote Branches | Date Order | Jump to:
v Ll re starus Graph Description Date Author Commit
Working Copy [XEEE Some demo changes

. Initial repository commit 225¢p 20171108 Jason Jones <jwjc b3378bd
~] 7 BRANCHES

0 master
&) TaGs

&> REMOTES

| Sorted by file status_*

g:z;nﬁ. g;l;;:ﬁ:zzﬁd71:3459:2!73ad&&sdas&ﬁbk:ascﬁ [0abaa?s] gisz COPYRIGHT At
Author: Jason Jones <j.w.jones@swansea.ac.uk> A pr—
Date: 22 September 2017 11:40:31 funklslne 216

‘Committer: Jason Jones N

a4 This file is part of the Swansim FLITE suite of tools.
Some demo changes E

i - swansim FLITE is free software: you can redistribute it and/or modify
7 - it under the terms of the GNU General Public License as published by
s

s

1

1

- the Free software Foundation, either version 2 of the License, or
< (2t your option) any later varsion.

o -
1 - Swansim FLITE is distributed in the hope that it will be useful,
& |+ Suansim FLITE is distributed in the hope that It Will be useful,
2 7 but WITHOUT ANY WARRANTY; WLtnoUt aven the implisd warranty of
FERNE NERCHANTABILITY o FITNESS FOR A PARTICULAR PURPOSE. See the
s GHU General PubliC License for more Getails.
10
11 Vou should have received a copy of the GNU General Pblic License
dummy.tt 17 - along with this Swansim FLITE product.
12+ along with this Swansin FLITE suite of products.
B ZCElogoico Fea
12 14 IF net, see <http://wmi.gnu.orgflicenses/>.
15 15
20 16

5 Pushing to the GitLab Server

So far we have created a Git repository, committed our source code files and folders to the repository
and then made some changes and committed those. This, however, has all been performed on the local
PC, and the entire repository is stored within our source code folder.

(For the curious amongst you — the repository is actually stored in a folder ‘.git’ in the root folder of our
source code as a set of folders and files with very odd looking names. You may have to show ‘Hidden
files’ in order to see this folder.)

In order to be able to share our repository easily with others in order to work as a team, or simply to have
a central, backed-up area in which our repositories are kept, we will need to push our repository to the
SwanSim GitLab server.

Before we can use the GitLab server, we need an account. If one has not already been created then
please email Jason Jones (j.w.jones@swansea.ac.uk) for an account.

5.1 Setting up Authentication with GitLab

Logging in to the GitLab server (https://git.swansim.org) is performed by manually entering your

username (or email) and your password into the log in page.

Git, on the other hand, uses SSH (Secure Shell) keys to perform the authentication without the need to
enter any passwords. SSH authentication relies on a public and private key — the private key should be
kept secret but the public key can be shared.

5.1.1 Creating the SSH keys
This is the most difficult part of the setup to get right. Luckily creating your SSH keys only has to be done

once. It is then advisable to store these somewhere secure but easily accessible (e.g. Dropbox).

There are two main file formats used to store the public and private keys — Putty (the tool used by
Windows users to access Linux) and OpenSSH (the standard Linux tools). SourceTree uses the Putty
format, whereas GitLab uses the OpenSSH format. SourceTree has the ability to generate both formats

but the steps are not the most intuitive.
The files we are going to create are:

e ‘id_rsa.ppk’ — This is the Putty file format that stores the public and private keys in one file.
e ‘id_rsa.pub’ — This stores the public key in the OpenSSH file format.
e ‘id_rsa.key’ — This stores the private key in the OpenSSH file format.

In SourceTree, go to the ‘Tools’ menu and select ‘Create or Import SSH keys’. This opens a window as

shown below.

mailto:j.w.jones@swansea.ac.uk
https://git.swansim.org/

[E® PuTTY Key Generator X
File Key Conversions Help
Key
No key.
Actions
Generate a public/private key pair
Load an exdsting private key file Load
Save the generated key Save public key Save private key
Parameters
Type of keyto generate:
() 55H-1 (RSA) (®) S5H-2 RSA ()S5H-2 DSA
Number of bits in a generated key: 1024

Click on the ‘Generate’ button. It asks you to move the move around inside the blank area of the window
to create some randomness. When finished the window will look like this.

[E® PuTTY Key Generator X
File Key Conversions Help
Key

Public key for pasting into OpenS5H authorized_keys file

AAAABINZaClyc2EAAAABJQAAAIEARRKokEYWIGT 4xGeXbk JJCQEXIIBAALG A
+bLCr=uBCi3RFMsfJQoii /dDR3ZYuRk6REiCjueGb 6F XHwllk ORjEr1pBE1+mSzDV

+pgm23PxVK/BtagKO

-+ 3lkhiL P 1 TGYCCRFAyFd TRPGUlInd21i3DRNQEC1a6sDRkIvADGs = rsa+ey-

20170922]
Key fingerprint [sshsa 1024 bd:76:56:d7:33:05: 16: 1d:a1:70:54:42:37.0c:6701 |
Key commert: |rsakey-20170922 |
Key passphrase: | |

Corfirm passphrase |

Actions

Generate a public/private key pair Generate
Load an existing private key file Load

Save the generated key Save public key Save private key
Parameters

Type of key to generate

(O 585H1 (RSA) ®) 55H-2 RSA (O 55H-2 DSA

Number of bits in a generated key: 1024

Creating ‘id_rsa.ppk’ — Click on the ‘Save private key’ and then navigate to the same folder and enter the
filename ‘id_rsa.ppk’. It will ask you if you are sure you don’t want to save it without a passphrase — click
‘Yes'.

Creating ‘id_rsa.key’ — Select the ‘Conversions -> Export OpenSSH key’ menu option, navigate to the
same folder and save it as ‘id_rsa.key’.

Creating ‘id_rsa.pub’ — Create a text file called ‘id_rsa.pub’ using any text editor then select all the text in
the ‘Public Key’ window at the top and paste it into the text editor and save the file.
(Ensure you select every character of the text)

5.1.2 Using the SSH keys
In order to use these keys that have just been generated, we need to tell SourceTree where to find the

key to use and tell GitLab which key to trust.

In SourceTree, select the ‘Tools/Options’ menu item to get the Options panel.

& | ® Iz ©

General Updates Diff Git Mereurial | Custom Actions | Authentication | Network

Allow SourceTree to modify your glabal Git and Mercurial config files

Use this version of SourceTree for UR| assaciation

Default user infarmation
Full Name: |Jason Jones

Email address: |jw.,jones@swansea.ac.uk

SSH Client Configuration
SSH Key: =]

SSH Client: | PUTTY /Plink * | (Git only, Mercurial always uses Plink on Windows)
Autormatically start SSH agent when SourceTree epens

Repo Settings
Project folder: -]

Language: | Automatic ~ | (Requires restart) Help translate SourceTree!

Default text encoding: | utf-8 ~

Keep backups on destructive operations

Refresh automatically when files change

[Refresh when application is not in focus

Check default remotes for updates every [10] minutes

Re-open repository tabs at startup

[Always display full console output

[+ Show ahead and hehind indications in tahs fwill only chanoe in new tahs)

In the SSH Key box, navigate to the ‘id_rsa.ppk’ file saved previously.

Log into the GitLab server (https://git.swansim.org) and go to the ‘Settings’ menu as shown below.

) —
A Projects - Dashboard - G X
&« C | @ Secure | hitps://git.swansim.org
= & projects Search + #0 1'® O
—
. Customize your experience Setfings
Change syntax themes, default preject pages, and mere in preferences.
(o) Sign out
o
(o] Check it out

Welcome to GitLab

Code, test, and deploy together

You can create a group for several dependent projects.
Groups are the best way to manage projects and members.

You don't have access to any projects right now

‘You can create up to 10 projects,

hitp ansim.org/profile

And then select the ‘SSH Keys’ tab as shown below.

https://git.swansim.org/

Mg} SSH Keys - User Settings X

&« C | @ Secure | hitps://git.swansim.org/profile/keys ¢
= v User Settings Search + #O 1'® O -
Profile Account Applications Chat Access Tokens Emails Password Notifications SSH Keys Preferences Audit Log

SSH Keys Add an 55H key
SSH keys allow you to establish a secure Before you can add an SSH key you need to generate it.
connection between your computer and Key
Gitlab.
Den't paste the private part of the SSH key. Paste the public part, which is usually contained in the file '~ /.ssh/id_rsapub’ and begins with
ssh-rsa
e
Title

Your S5H keys (0)

o Copy and paste the contents of the ‘id_rsa.pub’ file into the ‘Key’ box.
e Enter a Title to identify this key (for example, a combination of Your name and your PC’s name).
e Select ‘Add key’

5.2 Creating a GitLab Project
In order to store our repository on the GitLab Server, we need to create a project. Click on the orange
icon in the top-left of the page to go back to our home page.

From this we need to create a new project that will store our repository. Each project stores one, and
only one, repository. Groups can be created to organise projects if required.

Click on the ‘New project’ button to display this web page.

A New Project - GitLab. x e -

&« C | & Secure | https//gitswansim.org/projects/new | i
= Mg projects + # 1'® @ -
New project Project path Project name
Create or Import your project from popular Git https://git.swansim.org/tester/ my-awesome-project
services

Want to house several dependent projects under the same namespace? Create a group
Import project from

OGitHub ®Bitbucket & Gitlsb.com G Google Code ¥ Fogbugz it Repo by URL

Project description (optional)

Description format

Visibility Level @

© @ private
Project access must be granted explicitly to each user.

U intemal

The project can be cloned by any logged in user.

Q@ rubiic

The project can be cloned without any authentication.

e Enter a project name and a description. (The name does not need to be the same as the
repository name)

e For now, we will leave the project as ‘private’.

¢ Select ‘Create project’

This takes you to the home page of your project.

On this web page are a number of sets of instructions to get going with the command-line version of Git.
Since we are using SourceTree, we can ignore these.

The only piece of useful information is the URL near the top of the page. We will be entering this in
SourceTree now.

5.2.1 Linking our local repository to our GitLab project
Back in SourceTree, select the ‘Repository/Repository Settings’ menu item to open the window shown

below.

& | &

Remotes | Advanced

Remote repository paths
Name Path

[Add][Edit || Remowe

In this window:

e Select ‘Add’

Required information

Remaote name: ‘ | [] Default remote
URL / Path: |

Optional extended integration

Host Root URL:

Username: |

Extended integration is used to enable deeper integration with hosting providers such as Bitbucket, including
locating existing dones when following links from sites and creating pull reguests,

e Click ‘Default remote’. This populates the name with ‘origin’.
¢ Enter the URL from the GitLab project web page

¢ Leave the rest of the panel blank.

e Select ‘OK’

e Select ‘OK’ again to close the window completely.

5.2.2 Pushing our Local Repository to GitLab
Our repository can be pushed to the SwanSim GitLab server by selecting the ‘Push’ icon in SourceTree.

This opens a dialog as shown below.

Push : flite-mesh-generators
Push to repositary: git@git.swansim.org:tester/demo-project.git
Branches to push
Push? Local branch Remote branch Track?
O master v ‘ [m]
[Select A
Push all tags Force Push

Since this is the first time we have pushed the ‘master’ branch, we need to tick that branch and then
select ‘Push’. This is also the first time that SourceTree on this particular computer has contacted the
SwanSim GitLab server so the following dialog pops up.

Accept server's key? 5

o The key for the server 'git.swansim.org' hasn't been cached yet, and this
has caused the process to fail. The server's key is:
ssh-rsa 20438 8721 Tiadica:3c:0T:95:d8:6d:2f:b3:3dic7:5d:84

Do you want to accept this server’s key and retry the operation?

| Yes | [No |

Click ‘Yes’ and then cancel all operations. And try again.

Sometimes retrying the operation fails again. The best thing to do is exit SourceTree and start it again.
This only ever happens the first time you use the SSH keys you have just installed. Creating further
projects and adding repositories will work with no problem.

Congratulations!! You have now pushed your entire repository onto the GitLab Server.

6 Cloning a GitLab Repository to my Computer

In this section it is assumed that SourceTree is installed on your computer along with the SSH keys in

order to gain access to your GitLab repositories.

Starting SourceTree will show a window like below.

File Edit View Repository Actions Tools Help

Local repositories

[All Repos Add a new bookmark or drag & drop repository folders into this area to begin

Add Folder

Select the ‘Clone’ icon.

F= On [0 Doy o B> G55

New tab
| (o} th =] +
Local Remote Clane Add Create
Cloning is even easier if you set up a remote account
| | Browse
Repository Type: @ No path / URL supplied
| Browse

Local Folder:

| [Root]

() Advanced Options

In this window, enter:

The URL of the repository (This is available in the GitLab Project home page)

1.
Browse to a folder in which you want to store your local copy of the repository

2.

Select ‘Clone’ to copy across the entire repository from the GitLab server.

demo-project

Repasitory

Actions Tools

Help

® ®

Commit Push
~ I FiE sTaTUS
Working Copy

v [» BRANCHES

O master

@ 1AGs

{5 REMOTES

STASHES

O]

pull

@ IS 3

i &
ul H @
Fetch Branch Merge Stach Ty Git Flow Terminal Explorer Settings
All Branches * Snow Remote Branches | Date Order Jump to:
i Graph Description Date Author Commit
[master W origin/master]I

Inital repository commit

22 Sep 2017 1140 Jason Jones <j

225ep2017 1108 Jason Jones <jwrjc b3378bd
Sorted by file status * v &
Commit: [Oabac76] My<H
Parents: 5337554545 YJgLg| [coPrmiaHTb
Jones <j.mjones@swansea.ac.uk> AR s [Reverse]
22 September 2017 11:40:31 Enisair=E- Rebers
Committer: Jason Jones FR
. a This file is part of the Suansim FLITE suite of tools.
Some demo changes s s
6 - Suansin FLITE is free software: you can redistribute it and/or modify
7 1t under the terns of the GuU General Public License as published by
e Z the Free Software Foundation, either version 3 of the License, or
5 (3t your option) any later version.
10 =
1 " suansin FLITE is gistributed in the hope that it uill be useful,
< Susnsim FLITE is éistributed in the hope that it will be ussfll,
2 7 but WITHOUT ANY WARRANTY; without even the implicd warranty of
F NERCHANTABILITY or FITNESS FOR A PARTICULAR FLRFOSE. See the
s G General Public License for more details.
12
1 You should have received a copy of the GHU General Public License
dummy.tit 17 - along with this Suensin FLITE product.
12+ aleng uith this Suansim FLITE suite of products.
B ZCCE Logoico o | 5 ;
1 14 IF not, see <http://un. gnu.org/Ticenses/>.
13 15
» 1

Log / History

File Status

This can then be worked on in the normal manner and any changes can be pushed back to the server
with none of the complicated setup required in Section 5.

